

FNUSA-ICRC Workshop 2016

Harm-Benefit Analysis: the AALAS-FELASA Working Group Proposal

Javier Guillén

Senior Director Europe and Latin America

Aurora Brønstad University of Bergen – Norway

Ethical Balance of Different Things

Risk – Benefit

Cost – Benefit

Harm – Benefit

Directive 2010/63/EU. Art. 38, 2, d.

2. The project evaluation shall consist in particular of the following:

(a), (b), (c), (e), (f)

(d) a harm-benefit analysis of the project, to assess whether the harm to the animals in terms of suffering, pain and distress is justified by the expected outcome taking into account ethical considerations, and may ultimately benefit human beings, animals or the environment;

Guide for the Care and Use of Laboratory Animals (NRC, 2011)

"...the IACUC is obliged to weigh the objectives of the study against potential animal welfare concerns."

Terrestrial Code Chapter 7.8. Use of Animals in Research and Education

Ethical review: means consideration of the validity and justification for using *animals* including: an assessment and weighing of the potential harms for *animals* and likely benefits of the use and how these balance;...

Harm-benefit analysis: means the process of weighing the likely adverse effects (harms) to the *animals* against the benefits likely to accrue as a result of the proposed project.

Project Proposal Review: ...(i) ethical considerations such as the application of the Three Rs and a harm/benefit analysis; the benefits should be maximised and the harms, in terms of pain and distress, should be minimized;

International Guiding Principles for Biomedical Research Involving Animals (2012)

P.I: "...Decisions regarding the welfare, care and use of animals should be guided by scientific knowledge and professional judgement, reflect ethical and societal values, and consider the potential benefits and the impact on the well-being of the animals involved".

P.X: "The oversight framework... should promote a harm-benefit analysis for animal use, balancing the benefits derived from the research or educational activity with the potential for pain and/or distress experienced by the animal".

http://www.aaalac.org/accreditation/faq_landing. cfm#B3)

AAALAC International expects that IACUC's (or comparable oversight body), as part of the protocol review process, will weigh the potential adverse effects of the study against the potential benefits that are likely to accrue as a result of the research. This analysis should be performed prior to the final approval of the protocol, and should be a primary consideration in the review process.

AALAS-FELASA Harm-Benefit WG

Christian Newcomer, VMD, DACLAM Executive Director, AAALAC International

Jeffrey Everitt, DVM, DACLAM, DACVP GlaxoSmithKline

Kathy Laber, DVM, MS, DACLAM Animal Program Director, NIEHS/NIH Aurora Brønstad, DVM, Ph.D. Chief Veterinarian, University of Bergen

Thierry Decelle, DVM, M. Sc. Director, Global Animal Welfare Officer Sanofi Pasteur

Javier Guillén, DVM Director Europe & Latin America AAALAC International

AALAS-FELASA Harm-Benefit WG Assigned Tasks

- 1. Review existing literature on harm-benefit analysis.
- 2. Define and describe the current concepts and elements of the harm-benefit analysis.
- 3. Recommend how it can be addressed by persons responsible of the protocol/project applications.
- Define how the harm-benefit analysis can be implemented by committee members as part of the ethical evaluation.
- 5. Present practical cases that may exemplify common situations in the research environment.

Dimensions of Harm (literature)

- **Species**, choice of animals
- Sentience and consciousness
- Quality of animals
- Duration
- Duration related to lifespan
- Number of animals
- Origin, acquisition or transport
- Care, housing factors, handling, health care
- Possibility to express Normal Behaviour
- **Staff** competence and quality
- Hunger and Thirst

- Discomfort
- Pain
- Injury or Disease
- Fear, anxiety and distress
- Frequency of procedures
- Severity of procedures
- Risk of harm = probability x severity
- Deaths (caused by the experiment)
- Intrinsic value and animal rights
- Genetic modulation of animals respect for nature
- Aim, Realistic potential
- Scientific Quality
- Non-publishing of negative results

Dimensions of Harm (literature) The Five Freedoms

- **1. Freedom from Hunger and Thirst**
- 2. Freedom from Discomfort
- **3. Freedom from Pain, Injury or Disease**
- 4. Freedom to Express Normal Behaviour
- **5. Freedom from Fear and Distress**
- Brambell, R., Five Freedoms. 1965, Farm Animal Welfare Council
- Mellor&Reid, Concepts of animal well-being and predicting the impact of procedures on experimental animals 1994

"There is a danger that with focus largely on suffering we could overlook a broader view of welfare which may be more informative and safeguard more effectively <u>the interests</u> of the experimental animals "

Dimensions of Benefit (literature)

- Benefits for humans
- Benefits for animals
- Benefits for environment
- Economic interests
- Health interests
- Safety interests
- Knowledge interests
- Educational interest

- Primary (direct) versus secondary (indirect) benefits
- "Surrogate outcomes" versus "health outcomes"
- Originality
- Dissemination of results
- Aim, Realistic potential
- Quality, "good science"
- Non-publishing of negative results

19

Dimensions of Benefit (literature)

Home Office

Models of Harm-Benefit Analysis (literature)

	Strengths	Weaknesses
Tables, spreadsheet	<u>Categories</u> are useful to simplify a complex picture. Stimulate actions to avoid severe categories.	The categories do not fit all cases
$E = mc^2$ $\Sigma = \pi e^{HBA}$	<u>Algorithms</u> are helpful in <u>guiding</u> a decision	Moral dilemmas cannot/shall not be solved by arithmetic's
High	<u>Graphic</u> representations have <u>pedagogic value</u> in visualizing the concept and relationship between harm and benefit	Depend on defined categories (eg. low-middle-high) Not operational (too simple?)
	Process oriented models <u>structure</u> the HBA process, how to <u>balance</u> different opinions and <u>question</u> <u>quality</u> of the analysis. Generic	Does not provide an answer on what model (as previous) to use or provide solutions for conclusions (too generic?)

Harm-Benefit Analysis Extensive Summary

- HBA is a <u>systematic</u> way to assess and compare harms, benefits and how they are balanced
- HBA must be <u>transparent and verifiable</u>
- HBA <u>identifies harm</u> and <u>stimulate</u> researchers to seek alternative approaches
- HBA is a tool to make sure that animals are only used when it is justified because of potential benefit
- HBA <u>clarifies</u> if harm is <u>necessary</u> for achieving certain benefits
- HBA is important for <u>public relations</u>
- HBA is important to <u>avoid uncritical use</u> of animals even for the cause of the good
- HBA provides an <u>ethical framework and is an essential part of the ethical review</u>
- Harm Benefit analysis is based on <u>utilitarian consequence ethics</u>
- HBA <u>stimulates</u> <u>ethical reflection and discussion</u>
- HBA is dependent on and limited to the current <u>context</u> (external factors)
- HBA is influenced by subjective opinions ("affective heuristics")

Working Party Report

Current concepts of Harm-Benefit Analysis of Animal Experiments – Report from the AALAS-FELASA Working Group on Harm-Benefit Analysis – Part 1

Laboratory Animals 2016, Vol. 50(1S) 1-20 © The Author(s) 2016 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav DOI: 10.1177/0023677216642398 la.sagepub.com

SAGE

Aurora Brønstad¹, Christian E Newcomer², Thierry Decelle³, Jeffrey I Everitt⁴, Javier Guillen⁵ and Kathy Laber⁶

The AALAS-FELASA WG Proposal

- The working group defines HBA as a systematic, transparent way to assess and compare harms, benefits of a particular animal study and how they are balanced.
- The WG has structured a simple, systematic, and flexible approach and developed a tool to perform a thorough HBA.
- Consideration of harms is based upon the Five Freedoms and a set of "modulating factors"
- Consideration of benefits is based upon a specific set of domains (what, who, how, when) and "modulating factors".

KEY

H	arm = Impact on Five reedoms
F	reedom from Pain/Injury
FF	reedom from ear/Distress
F	reedom from lunger/Thirst
Ab	bility to express normal ehavior
FDh	reedom from iscomfort/appropriate usbandry

*Category:	Category Description:	Color Score:
Harm/Aggravating Factors	No impact	White
Factors	High Impact	
Harm/Aggravating Factors	Minimal	Pink
Benefit /Strength Factors	Moderate	
Harm/Aggravating Factors	Mild	Rose
Benefit /Strength Factors	Neutral	
Harm/Aggravating Factors	Moderate to Severe	Red
Benefit /Strength Factors	Minimal	
Harm/Aggravating Factors	Severe	Cronson
Benefit /Strength Factors	No positive impact	

HARM TABLE

HARM-Freedoms Impacted	i i
Pain/Injury:	
Fear/Distress:	X
Hunger/Thirst:	
Ability to express normal behavior:	L.
Discomfort/Husbandry:	

Modulating Factors for HARM	Description	Mitigating Effect	Aggravating Effect	Summary Color	
Animal— Species					
Animal— Number					
Animal— Suited to environment					
Animal— Health status					
Experimental- Intensity					
Experimental Duration					
Experimental Cumulative Experience					
Experimental— Endpoint					
Experimental Complication/Distributi on Rate	-				
Experimental Genetic Modulation					
Environmental Housing/Husbandry					
Environmental Personnel competence/experience					

BENE	FIT DOMAINS	
Socia	1	
-	Human health:	-
-	Animal health:	1.1
1.00	Environment health:	
Socio	economic:	
Scien	tific:	
Educa	ational:	
Safet	y and Efficacy:	

BENEFIT TABLE

Modulating Factors for Benefit	Description Why/How/What /When	Summary Color/ Numeric Score
Importance of outcome		
Clarity of objectives		
Translational Potential		
Likelihood of success		
Continuity of recognized scientific efforts		
Quality of Experimental Design	· · · · · · · · · · · · · · · · · · ·	
Innovation Level		
Dissemination of Results		

EUROPE@AAALAC.ORG | WWW.AAALAC.ORG

INTERNATIONAL

AALAC INTERNATION

Outcome Harm-Benefit Analysis

Acceptance Harm Benefit

Harm Benefit Harm Benefit</td

Evaluate Improvements

Harm	Benefit

Working Group Report

Recommendations for Addressing Harm-Benefit Analysis and Implementation in Ethical Evaluation – Report from the AALAS-FELASA Working Group on Harm-Benefit Analysis – Part 2

Kathy Laber¹, Christian E Newcomer², Thierry Decelle³, Jeffrey I Everitt⁴, Javier Guillen⁵ and Aurora Brønstad⁶

Laboratory Animals 2016, Vol. 50(1S) 21–42 © The Author(s) 2016 Reprints and permissions: sagepub.co.uk/ journalsPermissions.nav DOI: 10.1177/0023677216642397 la.sagepub.com

borator

